|
@@ -102,12 +102,21 @@ class LocalObjectDetector(ObjectDetector):
|
|
|
|
|
|
return detections
|
|
return detections
|
|
|
|
|
|
-def run_detector(detection_queue, result_connections: Dict[str, Connection], avg_speed, start, tf_device):
|
|
|
|
|
|
+def run_detector(detection_queue, out_events: Dict[str, mp.Event], avg_speed, start, tf_device):
|
|
print(f"Starting detection process: {os.getpid()}")
|
|
print(f"Starting detection process: {os.getpid()}")
|
|
listen()
|
|
listen()
|
|
frame_manager = SharedMemoryFrameManager()
|
|
frame_manager = SharedMemoryFrameManager()
|
|
object_detector = LocalObjectDetector(tf_device=tf_device)
|
|
object_detector = LocalObjectDetector(tf_device=tf_device)
|
|
|
|
|
|
|
|
+ outputs = {}
|
|
|
|
+ for name in out_events.keys():
|
|
|
|
+ out_shm = mp.shared_memory.SharedMemory(name=f"out-{name}", create=False)
|
|
|
|
+ out_np = np.ndarray((20,6), dtype=np.float32, buffer=out_shm.buf)
|
|
|
|
+ outputs[name] = {
|
|
|
|
+ 'shm': out_shm,
|
|
|
|
+ 'np': out_np
|
|
|
|
+ }
|
|
|
|
+
|
|
while True:
|
|
while True:
|
|
connection_id = detection_queue.get()
|
|
connection_id = detection_queue.get()
|
|
input_frame = frame_manager.get(connection_id, (1,300,300,3))
|
|
input_frame = frame_manager.get(connection_id, (1,300,300,3))
|
|
@@ -115,20 +124,21 @@ def run_detector(detection_queue, result_connections: Dict[str, Connection], avg
|
|
if input_frame is None:
|
|
if input_frame is None:
|
|
continue
|
|
continue
|
|
|
|
|
|
- # detect and put the output in the plasma store
|
|
|
|
|
|
+ # detect and send the output
|
|
start.value = datetime.datetime.now().timestamp()
|
|
start.value = datetime.datetime.now().timestamp()
|
|
# TODO: what is the overhead for pickling this result vs writing back to shared memory?
|
|
# TODO: what is the overhead for pickling this result vs writing back to shared memory?
|
|
# I could try using an Event() and waiting in the other process before looking in memory...
|
|
# I could try using an Event() and waiting in the other process before looking in memory...
|
|
detections = object_detector.detect_raw(input_frame)
|
|
detections = object_detector.detect_raw(input_frame)
|
|
- result_connections[connection_id].send(detections)
|
|
|
|
duration = datetime.datetime.now().timestamp()-start.value
|
|
duration = datetime.datetime.now().timestamp()-start.value
|
|
|
|
+ outputs[connection_id]['np'][:] = detections[:]
|
|
|
|
+ out_events[connection_id].set()
|
|
start.value = 0.0
|
|
start.value = 0.0
|
|
|
|
|
|
avg_speed.value = (avg_speed.value*9 + duration)/10
|
|
avg_speed.value = (avg_speed.value*9 + duration)/10
|
|
|
|
|
|
class EdgeTPUProcess():
|
|
class EdgeTPUProcess():
|
|
- def __init__(self, result_connections, tf_device=None):
|
|
|
|
- self.result_connections = result_connections
|
|
|
|
|
|
+ def __init__(self, out_events, tf_device=None):
|
|
|
|
+ self.out_events = out_events
|
|
self.detection_queue = mp.Queue()
|
|
self.detection_queue = mp.Queue()
|
|
self.avg_inference_speed = mp.Value('d', 0.01)
|
|
self.avg_inference_speed = mp.Value('d', 0.01)
|
|
self.detection_start = mp.Value('d', 0.0)
|
|
self.detection_start = mp.Value('d', 0.0)
|
|
@@ -149,19 +159,21 @@ class EdgeTPUProcess():
|
|
self.detection_start.value = 0.0
|
|
self.detection_start.value = 0.0
|
|
if (not self.detect_process is None) and self.detect_process.is_alive():
|
|
if (not self.detect_process is None) and self.detect_process.is_alive():
|
|
self.stop()
|
|
self.stop()
|
|
- self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.result_connections, self.avg_inference_speed, self.detection_start, self.tf_device))
|
|
|
|
|
|
+ self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.out_events, self.avg_inference_speed, self.detection_start, self.tf_device))
|
|
self.detect_process.daemon = True
|
|
self.detect_process.daemon = True
|
|
self.detect_process.start()
|
|
self.detect_process.start()
|
|
|
|
|
|
class RemoteObjectDetector():
|
|
class RemoteObjectDetector():
|
|
- def __init__(self, name, labels, detection_queue, result_connection: Connection):
|
|
|
|
|
|
+ def __init__(self, name, labels, detection_queue, event):
|
|
self.labels = load_labels(labels)
|
|
self.labels = load_labels(labels)
|
|
self.name = name
|
|
self.name = name
|
|
self.fps = EventsPerSecond()
|
|
self.fps = EventsPerSecond()
|
|
self.detection_queue = detection_queue
|
|
self.detection_queue = detection_queue
|
|
- self.result_connection = result_connection
|
|
|
|
|
|
+ self.event = event
|
|
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=True, size=300*300*3)
|
|
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=True, size=300*300*3)
|
|
self.np_shm = np.ndarray((1,300,300,3), dtype=np.uint8, buffer=self.shm.buf)
|
|
self.np_shm = np.ndarray((1,300,300,3), dtype=np.uint8, buffer=self.shm.buf)
|
|
|
|
+ self.out_shm = mp.shared_memory.SharedMemory(name=f"out-{self.name}", create=True, size=20*6*4)
|
|
|
|
+ self.out_np_shm = np.ndarray((20,6), dtype=np.float32, buffer=self.out_shm.buf)
|
|
|
|
|
|
def detect(self, tensor_input, threshold=.4):
|
|
def detect(self, tensor_input, threshold=.4):
|
|
detections = []
|
|
detections = []
|
|
@@ -169,13 +181,16 @@ class RemoteObjectDetector():
|
|
# copy input to shared memory
|
|
# copy input to shared memory
|
|
# TODO: what if I just write it there in the first place?
|
|
# TODO: what if I just write it there in the first place?
|
|
self.np_shm[:] = tensor_input[:]
|
|
self.np_shm[:] = tensor_input[:]
|
|
|
|
+ self.event.clear()
|
|
self.detection_queue.put(self.name)
|
|
self.detection_queue.put(self.name)
|
|
- if self.result_connection.poll(10):
|
|
|
|
- raw_detections = self.result_connection.recv()
|
|
|
|
- else:
|
|
|
|
- return detections
|
|
|
|
|
|
+ self.event.wait()
|
|
|
|
+
|
|
|
|
+ # if self.result_connection.poll(10):
|
|
|
|
+ # raw_detections = self.result_connection.recv()
|
|
|
|
+ # else:
|
|
|
|
+ # return detections
|
|
|
|
|
|
- for d in raw_detections:
|
|
|
|
|
|
+ for d in self.out_np_shm:
|
|
if d[1] < threshold:
|
|
if d[1] < threshold:
|
|
break
|
|
break
|
|
detections.append((
|
|
detections.append((
|