|
@@ -25,7 +25,7 @@ PATH_TO_LABELS = '/label_map.pbtext'
|
|
# TODO: make dynamic?
|
|
# TODO: make dynamic?
|
|
NUM_CLASSES = 90
|
|
NUM_CLASSES = 90
|
|
|
|
|
|
-REGIONS = "300,0,0:300,300,0:300,600,0"
|
|
|
|
|
|
+REGIONS = "350,0,300:400,350,250:400,750,250"
|
|
#REGIONS = os.getenv('REGIONS')
|
|
#REGIONS = os.getenv('REGIONS')
|
|
|
|
|
|
DETECTED_OBJECTS = []
|
|
DETECTED_OBJECTS = []
|
|
@@ -123,8 +123,11 @@ def main():
|
|
shared_memory_objects.append({
|
|
shared_memory_objects.append({
|
|
# create shared value for storing the time the frame was captured
|
|
# create shared value for storing the time the frame was captured
|
|
'frame_time': mp.Value('d', 0.0),
|
|
'frame_time': mp.Value('d', 0.0),
|
|
|
|
+ # shared value for signaling to the capture process that we are ready for the next frame
|
|
|
|
+ # (1 for ready 0 for not ready)
|
|
|
|
+ 'ready_for_frame': mp.Value('i', 1),
|
|
# shared value for motion detection signal (1 for motion 0 for no motion)
|
|
# shared value for motion detection signal (1 for motion 0 for no motion)
|
|
- 'motion_detected': mp.Value('i', 1),
|
|
|
|
|
|
+ 'motion_detected': mp.Value('i', 0),
|
|
# create shared array for storing 10 detected objects
|
|
# create shared array for storing 10 detected objects
|
|
# note: this must be a double even though the value you are storing
|
|
# note: this must be a double even though the value you are storing
|
|
# is a float. otherwise it stops updating the value in shared
|
|
# is a float. otherwise it stops updating the value in shared
|
|
@@ -164,66 +167,66 @@ def main():
|
|
motion_processes.append(motion_process)
|
|
motion_processes.append(motion_process)
|
|
|
|
|
|
object_parser = ObjectParser([obj['output_array'] for obj in shared_memory_objects])
|
|
object_parser = ObjectParser([obj['output_array'] for obj in shared_memory_objects])
|
|
- # object_parser.start()
|
|
|
|
|
|
+ object_parser.start()
|
|
|
|
|
|
capture_process.start()
|
|
capture_process.start()
|
|
print("capture_process pid ", capture_process.pid)
|
|
print("capture_process pid ", capture_process.pid)
|
|
- # for detection_process in detection_processes:
|
|
|
|
- # detection_process.start()
|
|
|
|
- # print("detection_process pid ", detection_process.pid)
|
|
|
|
|
|
+ for detection_process in detection_processes:
|
|
|
|
+ detection_process.start()
|
|
|
|
+ print("detection_process pid ", detection_process.pid)
|
|
for motion_process in motion_processes:
|
|
for motion_process in motion_processes:
|
|
motion_process.start()
|
|
motion_process.start()
|
|
print("motion_process pid ", motion_process.pid)
|
|
print("motion_process pid ", motion_process.pid)
|
|
|
|
|
|
- # app = Flask(__name__)
|
|
|
|
-
|
|
|
|
- # @app.route('/')
|
|
|
|
- # def index():
|
|
|
|
- # # return a multipart response
|
|
|
|
- # return Response(imagestream(),
|
|
|
|
- # mimetype='multipart/x-mixed-replace; boundary=frame')
|
|
|
|
- # def imagestream():
|
|
|
|
- # global DETECTED_OBJECTS
|
|
|
|
- # while True:
|
|
|
|
- # # max out at 5 FPS
|
|
|
|
- # time.sleep(0.2)
|
|
|
|
- # # make a copy of the current detected objects
|
|
|
|
- # detected_objects = DETECTED_OBJECTS.copy()
|
|
|
|
- # # make a copy of the current frame
|
|
|
|
- # frame = frame_arr.copy()
|
|
|
|
- # # convert to RGB for drawing
|
|
|
|
- # frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
|
- # # draw the bounding boxes on the screen
|
|
|
|
- # for obj in DETECTED_OBJECTS:
|
|
|
|
- # vis_util.draw_bounding_box_on_image_array(frame,
|
|
|
|
- # obj['ymin'],
|
|
|
|
- # obj['xmin'],
|
|
|
|
- # obj['ymax'],
|
|
|
|
- # obj['xmax'],
|
|
|
|
- # color='red',
|
|
|
|
- # thickness=2,
|
|
|
|
- # display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
|
|
|
- # use_normalized_coordinates=False)
|
|
|
|
-
|
|
|
|
- # for region in regions:
|
|
|
|
- # cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
|
|
|
- # (region['x_offset']+region['size'], region['y_offset']+region['size']),
|
|
|
|
- # (255,255,255), 2)
|
|
|
|
- # # convert back to BGR
|
|
|
|
- # frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
|
|
- # # encode the image into a jpg
|
|
|
|
- # ret, jpg = cv2.imencode('.jpg', frame)
|
|
|
|
- # yield (b'--frame\r\n'
|
|
|
|
- # b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
|
|
|
-
|
|
|
|
- # app.run(host='0.0.0.0', debug=False)
|
|
|
|
|
|
+ app = Flask(__name__)
|
|
|
|
+
|
|
|
|
+ @app.route('/')
|
|
|
|
+ def index():
|
|
|
|
+ # return a multipart response
|
|
|
|
+ return Response(imagestream(),
|
|
|
|
+ mimetype='multipart/x-mixed-replace; boundary=frame')
|
|
|
|
+ def imagestream():
|
|
|
|
+ global DETECTED_OBJECTS
|
|
|
|
+ while True:
|
|
|
|
+ # max out at 5 FPS
|
|
|
|
+ time.sleep(0.2)
|
|
|
|
+ # make a copy of the current detected objects
|
|
|
|
+ detected_objects = DETECTED_OBJECTS.copy()
|
|
|
|
+ # make a copy of the current frame
|
|
|
|
+ frame = frame_arr.copy()
|
|
|
|
+ # convert to RGB for drawing
|
|
|
|
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
|
+ # draw the bounding boxes on the screen
|
|
|
|
+ for obj in DETECTED_OBJECTS:
|
|
|
|
+ vis_util.draw_bounding_box_on_image_array(frame,
|
|
|
|
+ obj['ymin'],
|
|
|
|
+ obj['xmin'],
|
|
|
|
+ obj['ymax'],
|
|
|
|
+ obj['xmax'],
|
|
|
|
+ color='red',
|
|
|
|
+ thickness=2,
|
|
|
|
+ display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
|
|
|
+ use_normalized_coordinates=False)
|
|
|
|
+
|
|
|
|
+ for region in regions:
|
|
|
|
+ cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
|
|
|
+ (region['x_offset']+region['size'], region['y_offset']+region['size']),
|
|
|
|
+ (255,255,255), 2)
|
|
|
|
+ # convert back to BGR
|
|
|
|
+ frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
|
|
+ # encode the image into a jpg
|
|
|
|
+ ret, jpg = cv2.imencode('.jpg', frame)
|
|
|
|
+ yield (b'--frame\r\n'
|
|
|
|
+ b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
|
|
|
+
|
|
|
|
+ app.run(host='0.0.0.0', debug=False)
|
|
|
|
|
|
capture_process.join()
|
|
capture_process.join()
|
|
- # for detection_process in detection_processes:
|
|
|
|
- # detection_process.join()
|
|
|
|
|
|
+ for detection_process in detection_processes:
|
|
|
|
+ detection_process.join()
|
|
for motion_process in motion_processes:
|
|
for motion_process in motion_processes:
|
|
motion_process.join()
|
|
motion_process.join()
|
|
- # object_parser.join()
|
|
|
|
|
|
+ object_parser.join()
|
|
|
|
|
|
# convert shared memory array into numpy array
|
|
# convert shared memory array into numpy array
|
|
def tonumpyarray(mp_arr):
|
|
def tonumpyarray(mp_arr):
|
|
@@ -278,20 +281,22 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_moti
|
|
sess = tf.Session(graph=detection_graph)
|
|
sess = tf.Session(graph=detection_graph)
|
|
|
|
|
|
no_frames_available = -1
|
|
no_frames_available = -1
|
|
|
|
+ frame_time = 0.0
|
|
while True:
|
|
while True:
|
|
|
|
+ now = datetime.datetime.now().timestamp()
|
|
# if there is no motion detected
|
|
# if there is no motion detected
|
|
if shared_motion.value == 0:
|
|
if shared_motion.value == 0:
|
|
time.sleep(0.01)
|
|
time.sleep(0.01)
|
|
continue
|
|
continue
|
|
|
|
|
|
- # if there isnt a frame ready for processing
|
|
|
|
- if shared_frame_time.value == 0.0:
|
|
|
|
|
|
+ # if there isnt a new frame ready for processing
|
|
|
|
+ if shared_frame_time.value == frame_time:
|
|
# save the first time there were no frames available
|
|
# save the first time there were no frames available
|
|
if no_frames_available == -1:
|
|
if no_frames_available == -1:
|
|
- no_frames_available = datetime.datetime.now().timestamp()
|
|
|
|
|
|
+ no_frames_available = now
|
|
# if there havent been any frames available in 30 seconds,
|
|
# if there havent been any frames available in 30 seconds,
|
|
# sleep to avoid using so much cpu if the camera feed is down
|
|
# sleep to avoid using so much cpu if the camera feed is down
|
|
- if no_frames_available > 0 and (datetime.datetime.now().timestamp() - no_frames_available) > 30:
|
|
|
|
|
|
+ if no_frames_available > 0 and (now - no_frames_available) > 30:
|
|
time.sleep(1)
|
|
time.sleep(1)
|
|
print("sleeping because no frames have been available in a while")
|
|
print("sleeping because no frames have been available in a while")
|
|
else:
|
|
else:
|
|
@@ -302,10 +307,8 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_moti
|
|
# we got a valid frame, so reset the timer
|
|
# we got a valid frame, so reset the timer
|
|
no_frames_available = -1
|
|
no_frames_available = -1
|
|
|
|
|
|
- # if the frame is more than 0.5 second old, discard it
|
|
|
|
- if (datetime.datetime.now().timestamp() - shared_frame_time.value) > 0.5:
|
|
|
|
- # signal that we need a new frame
|
|
|
|
- shared_frame_time.value = 0.0
|
|
|
|
|
|
+ # if the frame is more than 0.5 second old, ignore it
|
|
|
|
+ if (now - shared_frame_time.value) > 0.5:
|
|
# rest a little bit to avoid maxing out the CPU
|
|
# rest a little bit to avoid maxing out the CPU
|
|
time.sleep(0.01)
|
|
time.sleep(0.01)
|
|
continue
|
|
continue
|
|
@@ -313,8 +316,6 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_moti
|
|
# make a copy of the cropped frame
|
|
# make a copy of the cropped frame
|
|
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
|
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
|
frame_time = shared_frame_time.value
|
|
frame_time = shared_frame_time.value
|
|
- # signal that the frame has been used so a new one will be ready
|
|
|
|
- shared_frame_time.value = 0.0
|
|
|
|
|
|
|
|
# convert to RGB
|
|
# convert to RGB
|
|
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
|
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|