Browse Source

handle various scenarios with external process failures

Blake Blackshear 5 years ago
parent
commit
3a9781c4f8
6 changed files with 217 additions and 132 deletions
  1. 6 0
      Dockerfile
  2. 81 22
      detect_objects.py
  3. 3 2
      frigate/edgetpu.py
  4. 95 91
      frigate/object_processing.py
  5. 8 0
      frigate/util.py
  6. 24 17
      frigate/video.py

+ 6 - 0
Dockerfile

@@ -52,6 +52,12 @@ RUN wget -q https://storage.googleapis.com/download.tensorflow.org/models/tflite
     mv /detect.tflite /cpu_model.tflite && \
     rm /cpu_model.zip
 
+RUN apt -qq update && apt -qq install --no-install-recommends -y \
+    gdb \
+    python3.7-dbg \
+    && rm -rf /var/lib/apt/lists/* \
+    && (apt-get autoremove -y; apt-get autoclean -y)
+
 WORKDIR /opt/frigate/
 ADD frigate frigate/
 COPY detect_objects.py .

+ 81 - 22
detect_objects.py

@@ -1,4 +1,7 @@
 import os
+import sys
+import traceback
+import signal
 import cv2
 import time
 import datetime
@@ -58,27 +61,50 @@ GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
 WEB_PORT = CONFIG.get('web_port', 5000)
 DEBUG = (CONFIG.get('debug', '0') == '1')
 
+def start_plasma_store():
+    plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
+    plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL)
+    time.sleep(1)
+    rc = plasma_process.poll()
+    if rc is not None:
+        return None
+    return plasma_process
+
 class CameraWatchdog(threading.Thread):
-    def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, object_processor):
+    def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, object_processor, plasma_process):
         threading.Thread.__init__(self)
         self.camera_processes = camera_processes
         self.config = config
         self.tflite_process = tflite_process
         self.tracked_objects_queue = tracked_objects_queue
         self.object_processor = object_processor
+        self.plasma_process = plasma_process
 
     def run(self):
         time.sleep(10)
         while True:
             # wait a bit before checking
             time.sleep(30)
-
+            
+            # check the plasma process
+            rc = self.plasma_process.poll()
+            if rc != None:
+                print(f"plasma_process exited unexpectedly with {rc}")
+                self.plasma_process = start_plasma_store()
+                time.sleep(10)
+
+            # check the detection process
             if (self.tflite_process.detection_start.value > 0.0 and 
                 datetime.datetime.now().timestamp() - self.tflite_process.detection_start.value > 10):
                 print("Detection appears to be stuck. Restarting detection process")
                 self.tflite_process.start_or_restart()
                 time.sleep(30)
+            elif not self.tflite_process.detect_process.is_alive():
+                print("Detection appears to have stopped. Restarting detection process")
+                self.tflite_process.start_or_restart()
+                time.sleep(30)
 
+            # check the camera processes
             for name, camera_process in self.camera_processes.items():
                 process = camera_process['process']
                 if not process.is_alive():
@@ -86,14 +112,33 @@ class CameraWatchdog(threading.Thread):
                     camera_process['fps'].value = float(self.config[name]['fps'])
                     camera_process['skipped_fps'].value = 0.0
                     camera_process['detection_fps'].value = 0.0
+                    camera_process['read_start'].value = 0.0
+                    camera_process['ffmpeg_pid'].value = 0
                     process = mp.Process(target=track_camera, args=(name, self.config[name], FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, 
                         self.tflite_process.detection_queue, self.tracked_objects_queue, 
-                        camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps']))
+                        camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps'],
+                        camera_process['read_start'], camera_process['ffmpeg_pid']))
                     process.daemon = True
                     camera_process['process'] = process
                     process.start()
                     print(f"Camera_process started for {name}: {process.pid}")
 
+                if (camera_process['read_start'].value > 0.0 and 
+                    datetime.datetime.now().timestamp() - camera_process['read_start'].value > 10):
+                    print(f"Process for {name} has been reading from ffmpeg for over 10 seconds long. Killing ffmpeg...")
+                    ffmpeg_pid = camera_process['ffmpeg_pid'].value
+                    if ffmpeg_pid != 0:
+                        try:
+                            os.kill(ffmpeg_pid, signal.SIGTERM)
+                        except OSError:
+                            print(f"Unable to terminate ffmpeg with pid {ffmpeg_pid}")
+                        time.sleep(10)
+                        try:
+                            os.kill(ffmpeg_pid, signal.SIGKILL)
+                            print(f"Unable to kill ffmpeg with pid {ffmpeg_pid}")
+                        except OSError:
+                            pass
+
 def main():
     # connect to mqtt and setup last will
     def on_connect(client, userdata, flags, rc):
@@ -117,14 +162,7 @@ def main():
     client.connect(MQTT_HOST, MQTT_PORT, 60)
     client.loop_start()
 
-    # start plasma store
-    plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
-    plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL)
-    time.sleep(1)
-    rc = plasma_process.poll()
-    if rc is not None:
-        raise RuntimeError("plasma_store exited unexpectedly with "
-                            "code %d" % (rc,))
+    plasma_process = start_plasma_store()
 
     ##
     # Setup config defaults for cameras
@@ -135,7 +173,7 @@ def main():
         }
 
     # Queue for cameras to push tracked objects to
-    tracked_objects_queue = mp.Queue()
+    tracked_objects_queue = mp.SimpleQueue()
     
     # Start the shared tflite process
     tflite_process = EdgeTPUProcess()
@@ -146,11 +184,14 @@ def main():
         camera_processes[name] = {
             'fps': mp.Value('d', float(config['fps'])),
             'skipped_fps': mp.Value('d', 0.0),
-            'detection_fps': mp.Value('d', 0.0)
+            'detection_fps': mp.Value('d', 0.0),
+            'read_start': mp.Value('d', 0.0),
+            'ffmpeg_pid': mp.Value('i', 0)
         }
         camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, 
-            tflite_process.detection_queue, tracked_objects_queue, 
-            camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps']))
+            tflite_process.detection_queue, tracked_objects_queue, camera_processes[name]['fps'], 
+            camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps'], 
+            camera_processes[name]['read_start'], camera_processes[name]['ffmpeg_pid']))
         camera_process.daemon = True
         camera_processes[name]['process'] = camera_process
 
@@ -161,7 +202,7 @@ def main():
     object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue)
     object_processor.start()
     
-    camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, object_processor)
+    camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, object_processor, plasma_process)
     camera_watchdog.start()
 
     # create a flask app that encodes frames a mjpeg on demand
@@ -174,6 +215,23 @@ def main():
         # return a healh
         return "Frigate is running. Alive and healthy!"
 
+    @app.route('/debug/stack')
+    def processor_stack():
+        frame = sys._current_frames().get(object_processor.ident, None)
+        if frame:
+            return "<br>".join(traceback.format_stack(frame)), 200
+        else:
+            return "no frame found", 200
+
+    @app.route('/debug/print_stack')
+    def print_stack():
+        pid = int(request.args.get('pid', 0))
+        if pid == 0:
+            return "missing pid", 200
+        else:
+            os.kill(pid, signal.SIGUSR1)
+            return "check logs", 200
+
     @app.route('/debug/stats')
     def stats():
         stats = {}
@@ -185,21 +243,22 @@ def main():
             stats[name] = {
                 'fps': round(camera_stats['fps'].value, 2),
                 'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
-                'detection_fps': round(camera_stats['detection_fps'].value, 2)
+                'detection_fps': round(camera_stats['detection_fps'].value, 2),
+                'read_start': camera_stats['read_start'].value,
+                'pid': camera_stats['process'].pid,
+                'ffmpeg_pid': camera_stats['ffmpeg_pid'].value
             }
         
         stats['coral'] = {
             'fps': round(total_detection_fps, 2),
             'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2),
-            'detection_queue': tflite_process.detection_queue.qsize(),
-            'detection_start': tflite_process.detection_start.value
+            'detection_start': tflite_process.detection_start.value,
+            'pid': tflite_process.detect_process.pid
         }
 
-        rc = plasma_process.poll()
+        rc = camera_watchdog.plasma_process.poll()
         stats['plasma_store_rc'] = rc
 
-        stats['tracked_objects_queue'] = tracked_objects_queue.qsize()
-
         return jsonify(stats)
 
     @app.route('/<camera_name>/<label>/best.jpg')

+ 3 - 2
frigate/edgetpu.py

@@ -7,7 +7,7 @@ import SharedArray as sa
 import pyarrow.plasma as plasma
 import tflite_runtime.interpreter as tflite
 from tflite_runtime.interpreter import load_delegate
-from frigate.util import EventsPerSecond
+from frigate.util import EventsPerSecond, listen
 
 def load_labels(path, encoding='utf-8'):
   """Loads labels from file (with or without index numbers).
@@ -64,6 +64,7 @@ class ObjectDetector():
 
 def run_detector(detection_queue, avg_speed, start):
     print(f"Starting detection process: {os.getpid()}")
+    listen()
     plasma_client = plasma.connect("/tmp/plasma")
     object_detector = ObjectDetector()
 
@@ -87,7 +88,7 @@ def run_detector(detection_queue, avg_speed, start):
         
 class EdgeTPUProcess():
     def __init__(self):
-        self.detection_queue = mp.Queue()
+        self.detection_queue = mp.SimpleQueue()
         self.avg_inference_speed = mp.Value('d', 0.01)
         self.detection_start = mp.Value('d', 0.0)
         self.detect_process = None

+ 95 - 91
frigate/object_processing.py

@@ -29,7 +29,6 @@ class TrackedObjectProcessor(threading.Thread):
         self.client = client
         self.topic_prefix = topic_prefix
         self.tracked_objects_queue = tracked_objects_queue
-        self.plasma_client = plasma.connect("/tmp/plasma")
         self.camera_data = defaultdict(lambda: {
             'best_objects': {},
             'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
@@ -49,101 +48,106 @@ class TrackedObjectProcessor(threading.Thread):
 
     def run(self):
         while True:
-            camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
+            try:
+                self.plasma_client = plasma.connect("/tmp/plasma")
+                while True:
+                    camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
 
-            config = self.config[camera]
-            best_objects = self.camera_data[camera]['best_objects']
-            current_object_status = self.camera_data[camera]['object_status']
-            self.camera_data[camera]['tracked_objects'] = tracked_objects
+                    config = self.config[camera]
+                    best_objects = self.camera_data[camera]['best_objects']
+                    current_object_status = self.camera_data[camera]['object_status']
+                    self.camera_data[camera]['tracked_objects'] = tracked_objects
 
-            ###
-            # Draw tracked objects on the frame
-            ###
-            object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}"))
-            object_id_bytes = object_id_hash.digest()
-            object_id = plasma.ObjectID(object_id_bytes)
-            current_frame = self.plasma_client.get(object_id, timeout_ms=0)
+                    ###
+                    # Draw tracked objects on the frame
+                    ###
+                    object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}"))
+                    object_id_bytes = object_id_hash.digest()
+                    object_id = plasma.ObjectID(object_id_bytes)
+                    current_frame = self.plasma_client.get(object_id, timeout_ms=0)
 
-            if not current_frame is plasma.ObjectNotAvailable:
-                # draw the bounding boxes on the frame
-                for obj in tracked_objects.values():
-                    thickness = 2
-                    color = COLOR_MAP[obj['label']]
-                    
-                    if obj['frame_time'] != frame_time:
-                        thickness = 1
-                        color = (255,0,0)
-
-                    # draw the bounding boxes on the frame
-                    box = obj['box']
-                    draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
-                    # draw the regions on the frame
-                    region = obj['region']
-                    cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
-                
-                if config['snapshots']['show_timestamp']:
-                    time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
-                    cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
+                    if not current_frame is plasma.ObjectNotAvailable:
+                        # draw the bounding boxes on the frame
+                        for obj in tracked_objects.values():
+                            thickness = 2
+                            color = COLOR_MAP[obj['label']]
+                            
+                            if obj['frame_time'] != frame_time:
+                                thickness = 1
+                                color = (255,0,0)
 
-                ###
-                # Set the current frame as ready
-                ###
-                self.camera_data[camera]['current_frame'] = current_frame
+                            # draw the bounding boxes on the frame
+                            box = obj['box']
+                            draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
+                            # draw the regions on the frame
+                            region = obj['region']
+                            cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
+                        
+                        if config['snapshots']['show_timestamp']:
+                            time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
+                            cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
 
-                # store the object id, so you can delete it at the next loop
-                previous_object_id = self.camera_data[camera]['object_id']
-                if not previous_object_id is None:
-                    self.plasma_client.delete([previous_object_id])
-                self.camera_data[camera]['object_id'] = object_id
-            
-            ###
-            # Maintain the highest scoring recent object and frame for each label
-            ###
-            for obj in tracked_objects.values():
-                # if the object wasn't seen on the current frame, skip it
-                if obj['frame_time'] != frame_time:
-                    continue
-                if obj['label'] in best_objects:
-                    now = datetime.datetime.now().timestamp()
-                    # if the object is a higher score than the current best score 
-                    # or the current object is more than 1 minute old, use the new object
-                    if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
-                        obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
-                        best_objects[obj['label']] = obj
-                else:
-                    obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
-                    best_objects[obj['label']] = obj
+                        ###
+                        # Set the current frame as ready
+                        ###
+                        self.camera_data[camera]['current_frame'] = current_frame
 
-            ###
-            # Report over MQTT
-            ###
-            # count objects with more than 2 entries in history by type
-            obj_counter = Counter()
-            for obj in tracked_objects.values():
-                if len(obj['history']) > 1:
-                    obj_counter[obj['label']] += 1
+                        # store the object id, so you can delete it at the next loop
+                        previous_object_id = self.camera_data[camera]['object_id']
+                        if not previous_object_id is None:
+                            self.plasma_client.delete([previous_object_id])
+                        self.camera_data[camera]['object_id'] = object_id
                     
-            # report on detected objects
-            for obj_name, count in obj_counter.items():
-                new_status = 'ON' if count > 0 else 'OFF'
-                if new_status != current_object_status[obj_name]:
-                    current_object_status[obj_name] = new_status
-                    self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False)
-                    # send the best snapshot over mqtt
-                    best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
-                    ret, jpg = cv2.imencode('.jpg', best_frame)
-                    if ret:
-                        jpg_bytes = jpg.tobytes()
-                        self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
+                    ###
+                    # Maintain the highest scoring recent object and frame for each label
+                    ###
+                    for obj in tracked_objects.values():
+                        # if the object wasn't seen on the current frame, skip it
+                        if obj['frame_time'] != frame_time:
+                            continue
+                        if obj['label'] in best_objects:
+                            now = datetime.datetime.now().timestamp()
+                            # if the object is a higher score than the current best score 
+                            # or the current object is more than 1 minute old, use the new object
+                            if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
+                                obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
+                                best_objects[obj['label']] = obj
+                        else:
+                            obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
+                            best_objects[obj['label']] = obj
+
+                    ###
+                    # Report over MQTT
+                    ###
+                    # count objects with more than 2 entries in history by type
+                    obj_counter = Counter()
+                    for obj in tracked_objects.values():
+                        if len(obj['history']) > 1:
+                            obj_counter[obj['label']] += 1
+                            
+                    # report on detected objects
+                    for obj_name, count in obj_counter.items():
+                        new_status = 'ON' if count > 0 else 'OFF'
+                        if new_status != current_object_status[obj_name]:
+                            current_object_status[obj_name] = new_status
+                            self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False)
+                            # send the best snapshot over mqtt
+                            best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
+                            ret, jpg = cv2.imencode('.jpg', best_frame)
+                            if ret:
+                                jpg_bytes = jpg.tobytes()
+                                self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
 
-            # expire any objects that are ON and no longer detected
-            expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
-            for obj_name in expired_objects:
-                current_object_status[obj_name] = 'OFF'
-                self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False)
-                # send updated snapshot over mqtt
-                best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
-                ret, jpg = cv2.imencode('.jpg', best_frame)
-                if ret:
-                    jpg_bytes = jpg.tobytes()
-                    self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
+                    # expire any objects that are ON and no longer detected
+                    expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
+                    for obj_name in expired_objects:
+                        current_object_status[obj_name] = 'OFF'
+                        self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False)
+                        # send updated snapshot over mqtt
+                        best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
+                        ret, jpg = cv2.imencode('.jpg', best_frame)
+                        if ret:
+                            jpg_bytes = jpg.tobytes()
+                            self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
+            except:
+                pass

+ 8 - 0
frigate/util.py

@@ -1,4 +1,6 @@
 import datetime
+import signal
+import traceback
 import collections
 import numpy as np
 import cv2
@@ -127,3 +129,9 @@ class EventsPerSecond:
         now = datetime.datetime.now().timestamp()
         seconds = min(now-self._start, last_n_seconds)
         return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds
+
+def print_stack(sig, frame):
+    traceback.print_stack(frame)
+
+def listen():
+    signal.signal(signal.SIGUSR1, print_stack)

+ 24 - 17
frigate/video.py

@@ -15,7 +15,7 @@ import copy
 import itertools
 import json
 from collections import defaultdict
-from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond
+from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond, listen
 from frigate.objects import ObjectTracker
 from frigate.edgetpu import RemoteObjectDetector
 from frigate.motion import MotionDetector
@@ -98,28 +98,32 @@ def create_tensor_input(frame, region):
     # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
     return np.expand_dims(cropped_frame, axis=0)
 
-def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
+def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, pid, ffmpeg_process=None):
     if not ffmpeg_process is None:
         print("Terminating the existing ffmpeg process...")
         ffmpeg_process.terminate()
         try:
             print("Waiting for ffmpeg to exit gracefully...")
-            ffmpeg_process.wait(timeout=30)
+            ffmpeg_process.communicate(timeout=30)
         except sp.TimeoutExpired:
             print("FFmpeg didnt exit. Force killing...")
             ffmpeg_process.kill()
-            ffmpeg_process.wait()
+            ffmpeg_process.communicate()
 
     print("Creating ffmpeg process...")
     print(" ".join(ffmpeg_cmd))
-    return sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size*10)
+    process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size*10)
+    pid.value = process.pid
+    return process
 
-def track_camera(name, config, ffmpeg_global_config, global_objects_config, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps):
+def track_camera(name, config, ffmpeg_global_config, global_objects_config, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps, read_start, ffmpeg_pid):
     print(f"Starting process for {name}: {os.getpid()}")
+    listen()
 
     # Merge the ffmpeg config with the global config
     ffmpeg = config.get('ffmpeg', {})
     ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
+    ffmpeg_restart_delay = ffmpeg.get('restart_delay', 0)
     ffmpeg_global_args = ffmpeg.get('global_args', ffmpeg_global_config['global_args'])
     ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args'])
     ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args'])
@@ -176,7 +180,7 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
 
     object_tracker = ObjectTracker(10)
     
-    ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size)
+    ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_pid)
     
     plasma_client = plasma.connect("/tmp/plasma")
     frame_num = 0
@@ -187,19 +191,22 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
     skipped_fps_tracker.start()
     object_detector.fps.start()
     while True:
-        start = datetime.datetime.now().timestamp()
+        rc = ffmpeg_process.poll()
+        if rc != None:
+            print(f"{name}: ffmpeg_process exited unexpectedly with {rc}")
+            print(f"Letting {name} rest for {ffmpeg_restart_delay} seconds before restarting...")
+            time.sleep(ffmpeg_restart_delay)
+            ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_pid, ffmpeg_process)
+            time.sleep(10)
+
+        read_start.value = datetime.datetime.now().timestamp()
         frame_bytes = ffmpeg_process.stdout.read(frame_size)
-        duration = datetime.datetime.now().timestamp()-start
+        duration = datetime.datetime.now().timestamp()-read_start.value
+        read_start.value = 0.0
         avg_wait = (avg_wait*99+duration)/100
 
-        if not frame_bytes:
-            rc = ffmpeg_process.poll()
-            if rc is not None:
-                print(f"{name}: ffmpeg_process exited unexpectedly with {rc}")
-                ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process)
-                time.sleep(10)
-            else:
-                print(f"{name}: ffmpeg_process is still running but didnt return any bytes")
+        if len(frame_bytes) == 0:
+            print(f"{name}: ffmpeg_process didnt return any bytes")
             continue
 
         # limit frame rate