|
@@ -43,7 +43,7 @@ categories = label_map_util.convert_label_map_to_categories(label_map, max_num_c
|
|
|
use_display_name=True)
|
|
|
category_index = label_map_util.create_category_index(categories)
|
|
|
|
|
|
-def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset):
|
|
|
+def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug):
|
|
|
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
|
|
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
|
|
|
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
|
@@ -62,11 +62,24 @@ def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_o
|
|
|
[boxes, scores, classes, num_detections],
|
|
|
feed_dict={image_tensor: image_np_expanded})
|
|
|
|
|
|
+ if debug:
|
|
|
+ if len([category_index.get(value) for index,value in enumerate(classes[0]) if scores[0,index] > 0.5]) > 0:
|
|
|
+ vis_util.visualize_boxes_and_labels_on_image_array(
|
|
|
+ cropped_frame,
|
|
|
+ np.squeeze(boxes),
|
|
|
+ np.squeeze(classes).astype(np.int32),
|
|
|
+ np.squeeze(scores),
|
|
|
+ category_index,
|
|
|
+ use_normalized_coordinates=True,
|
|
|
+ line_thickness=4)
|
|
|
+ cv2.imwrite("/lab/debug/obj-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
|
|
|
+
|
|
|
+
|
|
|
# build an array of detected objects
|
|
|
objects = []
|
|
|
for index, value in enumerate(classes[0]):
|
|
|
score = scores[0, index]
|
|
|
- if score > 0.1:
|
|
|
+ if score > 0.5:
|
|
|
box = boxes[0, index].tolist()
|
|
|
box[0] = (box[0] * region_size) + region_y_offset
|
|
|
box[1] = (box[1] * region_size) + region_x_offset
|
|
@@ -80,14 +93,21 @@ def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_o
|
|
|
return objects
|
|
|
|
|
|
class ObjectParser(threading.Thread):
|
|
|
- def __init__(self, object_arrays):
|
|
|
+ def __init__(self, objects_changed, objects_parsed, object_arrays):
|
|
|
threading.Thread.__init__(self)
|
|
|
+ self._objects_changed = objects_changed
|
|
|
+ self._objects_parsed = objects_parsed
|
|
|
self._object_arrays = object_arrays
|
|
|
|
|
|
def run(self):
|
|
|
global DETECTED_OBJECTS
|
|
|
while True:
|
|
|
detected_objects = []
|
|
|
+ # wait until object detection has run
|
|
|
+ # TODO: what if something else changed while I was processing???
|
|
|
+ with self._objects_changed:
|
|
|
+ self._objects_changed.wait()
|
|
|
+
|
|
|
for object_array in self._object_arrays:
|
|
|
object_index = 0
|
|
|
while(object_index < 60 and object_array[object_index] > 0):
|
|
@@ -102,29 +122,56 @@ class ObjectParser(threading.Thread):
|
|
|
})
|
|
|
object_index += 6
|
|
|
DETECTED_OBJECTS = detected_objects
|
|
|
- time.sleep(0.1)
|
|
|
-class MqttPublisher(threading.Thread):
|
|
|
- def __init__(self, host, topic_prefix, object_classes, motion_flags):
|
|
|
+ # notify that objects were parsed
|
|
|
+ with self._objects_parsed:
|
|
|
+ self._objects_parsed.notify_all()
|
|
|
+
|
|
|
+class MqttMotionPublisher(threading.Thread):
|
|
|
+ def __init__(self, client, topic_prefix, motion_changed, motion_flags):
|
|
|
threading.Thread.__init__(self)
|
|
|
- self.client = mqtt.Client()
|
|
|
- self.client.will_set(topic_prefix+'/available', payload='offline', qos=1, retain=True)
|
|
|
- self.client.connect(host, 1883, 60)
|
|
|
- self.client.loop_start()
|
|
|
- self.client.publish(topic_prefix+'/available', 'online', retain=True)
|
|
|
+ self.client = client
|
|
|
self.topic_prefix = topic_prefix
|
|
|
- self.object_classes = object_classes
|
|
|
+ self.motion_changed = motion_changed
|
|
|
self.motion_flags = motion_flags
|
|
|
|
|
|
+ def run(self):
|
|
|
+ last_sent_motion = ""
|
|
|
+ while True:
|
|
|
+ with self.motion_changed:
|
|
|
+ self.motion_changed.wait()
|
|
|
+
|
|
|
+ # send message for motion
|
|
|
+ motion_status = 'OFF'
|
|
|
+ if any(obj.is_set() for obj in self.motion_flags):
|
|
|
+ motion_status = 'ON'
|
|
|
+
|
|
|
+ if last_sent_motion != motion_status:
|
|
|
+ last_sent_motion = motion_status
|
|
|
+ self.client.publish(self.topic_prefix+'/motion', motion_status, retain=False)
|
|
|
+
|
|
|
+class MqttObjectPublisher(threading.Thread):
|
|
|
+ def __init__(self, client, topic_prefix, objects_parsed, object_classes):
|
|
|
+ threading.Thread.__init__(self)
|
|
|
+ self.client = client
|
|
|
+ self.topic_prefix = topic_prefix
|
|
|
+ self.objects_parsed = objects_parsed
|
|
|
+ self.object_classes = object_classes
|
|
|
+
|
|
|
def run(self):
|
|
|
global DETECTED_OBJECTS
|
|
|
|
|
|
last_sent_payload = ""
|
|
|
- last_motion = ""
|
|
|
while True:
|
|
|
+
|
|
|
# initialize the payload
|
|
|
payload = {}
|
|
|
for obj in self.object_classes:
|
|
|
payload[obj] = []
|
|
|
+
|
|
|
+ # wait until objects have been parsed
|
|
|
+ with self.objects_parsed:
|
|
|
+ self.objects_parsed.wait()
|
|
|
+
|
|
|
# loop over detected objects and populate
|
|
|
# the payload
|
|
|
detected_objects = DETECTED_OBJECTS.copy()
|
|
@@ -132,22 +179,12 @@ class MqttPublisher(threading.Thread):
|
|
|
if obj['name'] in self.object_classes:
|
|
|
payload[obj['name']].append(obj)
|
|
|
|
|
|
+ # send message for objects if different
|
|
|
new_payload = json.dumps(payload, sort_keys=True)
|
|
|
if new_payload != last_sent_payload:
|
|
|
last_sent_payload = new_payload
|
|
|
self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False)
|
|
|
|
|
|
- motion_status = 'OFF'
|
|
|
- if any(obj.value == 1 for obj in self.motion_flags):
|
|
|
- motion_status = 'ON'
|
|
|
-
|
|
|
- if motion_status != last_motion:
|
|
|
- last_motion = motion_status
|
|
|
- self.client.publish(self.topic_prefix+'/motion', motion_status, retain=False)
|
|
|
-
|
|
|
-
|
|
|
- time.sleep(0.1)
|
|
|
-
|
|
|
def main():
|
|
|
# Parse selected regions
|
|
|
regions = []
|
|
@@ -158,11 +195,8 @@ def main():
|
|
|
'x_offset': int(region_parts[1]),
|
|
|
'y_offset': int(region_parts[2]),
|
|
|
'min_object_size': int(region_parts[3]),
|
|
|
- # shared value for signaling to the capture process that we are ready for the next frame
|
|
|
- # (1 for ready 0 for not ready)
|
|
|
- 'ready_for_frame': mp.Value('i', 1),
|
|
|
- # shared value for motion detection signal (1 for motion 0 for no motion)
|
|
|
- 'motion_detected': mp.Value('i', 0),
|
|
|
+ # Event for motion detection signaling
|
|
|
+ 'motion_detected': mp.Event(),
|
|
|
# create shared array for storing 10 detected objects
|
|
|
# note: this must be a double even though the value you are storing
|
|
|
# is a float. otherwise it stops updating the value in shared
|
|
@@ -186,44 +220,67 @@ def main():
|
|
|
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
|
|
# create shared value for storing the frame_time
|
|
|
shared_frame_time = mp.Value('d', 0.0)
|
|
|
+ # Lock to control access to the frame while writing
|
|
|
+ frame_lock = mp.Lock()
|
|
|
+ # Condition for notifying that a new frame is ready
|
|
|
+ frame_ready = mp.Condition()
|
|
|
+ # Condition for notifying that motion status changed globally
|
|
|
+ motion_changed = mp.Condition()
|
|
|
+ # Condition for notifying that object detection ran
|
|
|
+ objects_changed = mp.Condition()
|
|
|
+ # Condition for notifying that objects were parsed
|
|
|
+ objects_parsed = mp.Condition()
|
|
|
# shape current frame so it can be treated as an image
|
|
|
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
|
|
capture_process = mp.Process(target=fetch_frames, args=(shared_arr,
|
|
|
- shared_frame_time, [region['ready_for_frame'] for region in regions], frame_shape))
|
|
|
+ shared_frame_time, frame_lock, frame_ready, frame_shape))
|
|
|
capture_process.daemon = True
|
|
|
|
|
|
detection_processes = []
|
|
|
- for index, region in enumerate(regions):
|
|
|
+ motion_processes = []
|
|
|
+ for region in regions:
|
|
|
detection_process = mp.Process(target=process_frames, args=(shared_arr,
|
|
|
region['output_array'],
|
|
|
shared_frame_time,
|
|
|
+ frame_lock, frame_ready,
|
|
|
region['motion_detected'],
|
|
|
+ objects_changed,
|
|
|
frame_shape,
|
|
|
- region['size'], region['x_offset'], region['y_offset']))
|
|
|
+ region['size'], region['x_offset'], region['y_offset'],
|
|
|
+ False))
|
|
|
detection_process.daemon = True
|
|
|
detection_processes.append(detection_process)
|
|
|
|
|
|
- motion_processes = []
|
|
|
- for index, region in enumerate(regions):
|
|
|
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
|
|
|
shared_frame_time,
|
|
|
- region['ready_for_frame'],
|
|
|
+ frame_lock, frame_ready,
|
|
|
region['motion_detected'],
|
|
|
+ motion_changed,
|
|
|
frame_shape,
|
|
|
region['size'], region['x_offset'], region['y_offset'],
|
|
|
- region['min_object_size']))
|
|
|
+ region['min_object_size'],
|
|
|
+ True))
|
|
|
motion_process.daemon = True
|
|
|
motion_processes.append(motion_process)
|
|
|
|
|
|
- object_parser = ObjectParser([region['output_array'] for region in regions])
|
|
|
+ object_parser = ObjectParser(objects_changed, objects_parsed, [region['output_array'] for region in regions])
|
|
|
object_parser.start()
|
|
|
|
|
|
- mqtt_publisher = MqttPublisher(MQTT_HOST, MQTT_TOPIC_PREFIX,
|
|
|
- MQTT_OBJECT_CLASSES.split(','),
|
|
|
- [region['motion_detected'] for region in regions])
|
|
|
+ client = mqtt.Client()
|
|
|
+ client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
|
|
|
+ client.connect(MQTT_HOST, 1883, 60)
|
|
|
+ client.loop_start()
|
|
|
+ client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
|
|
|
+
|
|
|
+ mqtt_publisher = MqttObjectPublisher(client, MQTT_TOPIC_PREFIX, objects_parsed,
|
|
|
+ MQTT_OBJECT_CLASSES.split(','))
|
|
|
mqtt_publisher.start()
|
|
|
|
|
|
+ mqtt_motion_publisher = MqttMotionPublisher(client, MQTT_TOPIC_PREFIX, motion_changed,
|
|
|
+ [region['motion_detected'] for region in regions])
|
|
|
+ mqtt_motion_publisher.start()
|
|
|
+
|
|
|
capture_process.start()
|
|
|
print("capture_process pid ", capture_process.pid)
|
|
|
for detection_process in detection_processes:
|
|
@@ -247,8 +304,9 @@ def main():
|
|
|
time.sleep(0.2)
|
|
|
# make a copy of the current detected objects
|
|
|
detected_objects = DETECTED_OBJECTS.copy()
|
|
|
- # make a copy of the current frame
|
|
|
- frame = frame_arr.copy()
|
|
|
+ # lock and make a copy of the current frame
|
|
|
+ with frame_lock:
|
|
|
+ frame = frame_arr.copy()
|
|
|
# convert to RGB for drawing
|
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
# draw the bounding boxes on the screen
|
|
@@ -265,14 +323,12 @@ def main():
|
|
|
|
|
|
for region in regions:
|
|
|
color = (255,255,255)
|
|
|
- if region['motion_detected'].value == 1:
|
|
|
+ if region['motion_detected'].is_set():
|
|
|
color = (0,255,0)
|
|
|
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
|
|
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
|
|
color, 2)
|
|
|
|
|
|
- cv2.putText(frame, datetime.datetime.now().strftime("%H:%M:%S"), (1125, 20),
|
|
|
- cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
|
|
|
# convert back to BGR
|
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
|
# encode the image into a jpg
|
|
@@ -296,7 +352,7 @@ def tonumpyarray(mp_arr):
|
|
|
|
|
|
# fetch the frames as fast a possible, only decoding the frames when the
|
|
|
# detection_process has consumed the current frame
|
|
|
-def fetch_frames(shared_arr, shared_frame_time, ready_for_frame_flags, frame_shape):
|
|
|
+def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape):
|
|
|
# convert shared memory array into numpy and shape into image array
|
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
|
@@ -311,25 +367,24 @@ def fetch_frames(shared_arr, shared_frame_time, ready_for_frame_flags, frame_sha
|
|
|
# snapshot the time the frame was grabbed
|
|
|
frame_time = datetime.datetime.now()
|
|
|
if ret:
|
|
|
- # if the anyone is ready for the next frame decode it
|
|
|
- # otherwise skip this frame and move onto the next one
|
|
|
- if any(flag.value == 1 for flag in ready_for_frame_flags):
|
|
|
- # go ahead and decode the current frame
|
|
|
- ret, frame = video.retrieve()
|
|
|
- if ret:
|
|
|
+ # go ahead and decode the current frame
|
|
|
+ ret, frame = video.retrieve()
|
|
|
+ if ret:
|
|
|
+ # Lock access and update frame
|
|
|
+ with frame_lock:
|
|
|
arr[:] = frame
|
|
|
shared_frame_time.value = frame_time.timestamp()
|
|
|
- # signal to the detection_processes by setting the shared_frame_time
|
|
|
- for flag in ready_for_frame_flags:
|
|
|
- flag.value = 0
|
|
|
- else:
|
|
|
- # sleep a little to reduce CPU usage
|
|
|
- time.sleep(0.1)
|
|
|
+ # Notify with the condition that a new frame is ready
|
|
|
+ with frame_ready:
|
|
|
+ frame_ready.notify_all()
|
|
|
|
|
|
video.release()
|
|
|
|
|
|
# do the actual object detection
|
|
|
-def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
|
|
|
+def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_lock, frame_ready,
|
|
|
+ motion_detected, objects_changed, frame_shape, region_size, region_x_offset, region_y_offset,
|
|
|
+ debug):
|
|
|
+ debug = True
|
|
|
# shape shared input array into frame for processing
|
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
|
@@ -343,56 +398,38 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_moti
|
|
|
tf.import_graph_def(od_graph_def, name='')
|
|
|
sess = tf.Session(graph=detection_graph)
|
|
|
|
|
|
- no_frames_available = -1
|
|
|
frame_time = 0.0
|
|
|
while True:
|
|
|
now = datetime.datetime.now().timestamp()
|
|
|
- # if there is no motion detected
|
|
|
- if shared_motion.value == 0:
|
|
|
- time.sleep(0.1)
|
|
|
- continue
|
|
|
|
|
|
- # if there isnt a new frame ready for processing
|
|
|
- if shared_frame_time.value == frame_time:
|
|
|
- # save the first time there were no frames available
|
|
|
- if no_frames_available == -1:
|
|
|
- no_frames_available = now
|
|
|
- # if there havent been any frames available in 30 seconds,
|
|
|
- # sleep to avoid using so much cpu if the camera feed is down
|
|
|
- if no_frames_available > 0 and (now - no_frames_available) > 30:
|
|
|
- time.sleep(1)
|
|
|
- print("sleeping because no frames have been available in a while")
|
|
|
- else:
|
|
|
- # rest a little bit to avoid maxing out the CPU
|
|
|
- time.sleep(0.1)
|
|
|
- continue
|
|
|
-
|
|
|
- # we got a valid frame, so reset the timer
|
|
|
- no_frames_available = -1
|
|
|
+ # wait until motion is detected
|
|
|
+ motion_detected.wait()
|
|
|
|
|
|
- # if the frame is more than 0.5 second old, ignore it
|
|
|
- if (now - shared_frame_time.value) > 0.5:
|
|
|
- # rest a little bit to avoid maxing out the CPU
|
|
|
- time.sleep(0.1)
|
|
|
- continue
|
|
|
+ with frame_ready:
|
|
|
+ # if there isnt a frame ready for processing or it is old, wait for a signal
|
|
|
+ if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
|
|
|
+ frame_ready.wait()
|
|
|
|
|
|
# make a copy of the cropped frame
|
|
|
- cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
|
|
- frame_time = shared_frame_time.value
|
|
|
+ with frame_lock:
|
|
|
+ cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
|
|
+ frame_time = shared_frame_time.value
|
|
|
|
|
|
# convert to RGB
|
|
|
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
|
|
# do the object detection
|
|
|
- objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset)
|
|
|
+ objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug)
|
|
|
# copy the detected objects to the output array, filling the array when needed
|
|
|
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
|
|
+ with objects_changed:
|
|
|
+ objects_changed.notify_all()
|
|
|
|
|
|
# do the actual motion detection
|
|
|
-def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area):
|
|
|
+def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion_detected, motion_changed,
|
|
|
+ frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area, debug):
|
|
|
# shape shared input array into frame for processing
|
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
|
|
- no_frames_available = -1
|
|
|
avg_frame = None
|
|
|
last_motion = -1
|
|
|
frame_time = 0.0
|
|
@@ -402,40 +439,19 @@ def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion,
|
|
|
# if it has been long enough since the last motion, clear the flag
|
|
|
if last_motion > 0 and (now - last_motion) > 2:
|
|
|
last_motion = -1
|
|
|
- shared_motion.value = 0
|
|
|
- # if there isnt a frame ready for processing
|
|
|
- if shared_frame_time.value == frame_time:
|
|
|
- # save the first time there were no frames available
|
|
|
- if no_frames_available == -1:
|
|
|
- no_frames_available = now
|
|
|
- # if there havent been any frames available in 30 seconds,
|
|
|
- # sleep to avoid using so much cpu if the camera feed is down
|
|
|
- if no_frames_available > 0 and (now - no_frames_available) > 30:
|
|
|
- time.sleep(1)
|
|
|
- print("sleeping because no frames have been available in a while")
|
|
|
- else:
|
|
|
- # rest a little bit to avoid maxing out the CPU
|
|
|
- time.sleep(0.1)
|
|
|
- if ready_for_frame.value == 0:
|
|
|
- ready_for_frame.value = 1
|
|
|
- continue
|
|
|
+ motion_detected.clear()
|
|
|
+ with motion_changed:
|
|
|
+ motion_changed.notify_all()
|
|
|
|
|
|
- # we got a valid frame, so reset the timer
|
|
|
- no_frames_available = -1
|
|
|
-
|
|
|
- # if the frame is more than 0.5 second old, discard it
|
|
|
- if (now - shared_frame_time.value) > 0.5:
|
|
|
- # signal that we need a new frame
|
|
|
- ready_for_frame.value = 1
|
|
|
- # rest a little bit to avoid maxing out the CPU
|
|
|
- time.sleep(0.1)
|
|
|
- continue
|
|
|
+ with frame_ready:
|
|
|
+ # if there isnt a frame ready for processing or it is old, wait for a signal
|
|
|
+ if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
|
|
|
+ frame_ready.wait()
|
|
|
|
|
|
- # make a copy of the cropped frame
|
|
|
- cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
|
|
|
- frame_time = shared_frame_time.value
|
|
|
- # signal that the frame has been used so a new one will be ready
|
|
|
- ready_for_frame.value = 1
|
|
|
+ # lock and make a copy of the cropped frame
|
|
|
+ with frame_lock:
|
|
|
+ cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
|
|
|
+ frame_time = shared_frame_time.value
|
|
|
|
|
|
# convert to grayscale
|
|
|
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
|
|
@@ -447,7 +463,7 @@ def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion,
|
|
|
continue
|
|
|
|
|
|
# look at the delta from the avg_frame
|
|
|
- cv2.accumulateWeighted(gray, avg_frame, 0.5)
|
|
|
+ cv2.accumulateWeighted(gray, avg_frame, 0.01)
|
|
|
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
|
|
|
thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
|
|
|
|
|
@@ -458,19 +474,41 @@ def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion,
|
|
|
cv2.CHAIN_APPROX_SIMPLE)
|
|
|
cnts = imutils.grab_contours(cnts)
|
|
|
|
|
|
+ # if there are no contours, there is no motion
|
|
|
+ if len(cnts) < 1:
|
|
|
+ motion_frames = 0
|
|
|
+ continue
|
|
|
+
|
|
|
+ motion_found = False
|
|
|
+
|
|
|
# loop over the contours
|
|
|
for c in cnts:
|
|
|
# if the contour is big enough, count it as motion
|
|
|
contour_area = cv2.contourArea(c)
|
|
|
if contour_area > min_motion_area:
|
|
|
- motion_frames += 1
|
|
|
- # if there have been enough consecutive motion frames, report motion
|
|
|
- if motion_frames >= 3:
|
|
|
- shared_motion.value = 1
|
|
|
- last_motion = now
|
|
|
- break
|
|
|
+ motion_found = True
|
|
|
+ if debug:
|
|
|
+ cv2.drawContours(cropped_frame, [c], -1, (0, 255, 0), 2)
|
|
|
+ x, y, w, h = cv2.boundingRect(c)
|
|
|
+ cv2.putText(cropped_frame, str(contour_area), (x, y),
|
|
|
+ cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 100, 0), 2)
|
|
|
+ else:
|
|
|
+ break
|
|
|
+
|
|
|
+ if motion_found:
|
|
|
+ motion_frames += 1
|
|
|
+ # if there have been enough consecutive motion frames, report motion
|
|
|
+ if motion_frames >= 3:
|
|
|
+ motion_detected.set()
|
|
|
+ with motion_changed:
|
|
|
+ motion_changed.notify_all()
|
|
|
+ last_motion = now
|
|
|
+ else:
|
|
|
motion_frames = 0
|
|
|
|
|
|
+ if debug and motion_frames >= 3:
|
|
|
+ cv2.imwrite("/lab/debug/motion-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
|
|
|
+
|
|
|
if __name__ == '__main__':
|
|
|
mp.freeze_support()
|
|
|
main()
|