|
@@ -9,6 +9,8 @@ import cv2
|
|
|
import imutils
|
|
|
import numpy as np
|
|
|
import subprocess as sp
|
|
|
+import multiprocessing as mp
|
|
|
+import SharedArray as sa
|
|
|
from scipy.spatial import distance as dist
|
|
|
import tflite_runtime.interpreter as tflite
|
|
|
from tflite_runtime.interpreter import load_delegate
|
|
@@ -245,6 +247,19 @@ class ObjectDetector():
|
|
|
|
|
|
self.tensor_input_details = self.interpreter.get_input_details()
|
|
|
self.tensor_output_details = self.interpreter.get_output_details()
|
|
|
+
|
|
|
+ def detect_raw(self, tensor_input):
|
|
|
+ self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
|
|
|
+ self.interpreter.invoke()
|
|
|
+ boxes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[0]['index']))
|
|
|
+ label_codes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[1]['index']))
|
|
|
+ scores = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[2]['index']))
|
|
|
+
|
|
|
+ detections = np.zeros((20,6), np.float32)
|
|
|
+ for i, score in enumerate(scores):
|
|
|
+ detections[i] = [label_codes[i], score, boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]]
|
|
|
+
|
|
|
+ return detections
|
|
|
|
|
|
def detect(self, tensor_input, threshold=.4):
|
|
|
self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
|
|
@@ -268,6 +283,63 @@ class ObjectDetector():
|
|
|
|
|
|
return detections
|
|
|
|
|
|
+class RemoteObjectDetector():
|
|
|
+ def __init__(self, model, labels):
|
|
|
+ self.labels = load_labels(labels)
|
|
|
+ try:
|
|
|
+ sa.delete("frame")
|
|
|
+ except:
|
|
|
+ pass
|
|
|
+ try:
|
|
|
+ sa.delete("detections")
|
|
|
+ except:
|
|
|
+ pass
|
|
|
+
|
|
|
+ self.input_frame = sa.create("frame", shape=(1,300,300,3), dtype=np.uint8)
|
|
|
+ self.detections = sa.create("detections", shape=(20,6), dtype=np.float32)
|
|
|
+
|
|
|
+ self.detect_lock = mp.Lock()
|
|
|
+ self.detect_ready = mp.Event()
|
|
|
+ self.frame_ready = mp.Event()
|
|
|
+
|
|
|
+ def run_detector(model, labels, detect_ready, frame_ready):
|
|
|
+ object_detector = ObjectDetector(model, labels)
|
|
|
+ input_frame = sa.attach("frame")
|
|
|
+ detections = sa.attach("detections")
|
|
|
+
|
|
|
+ while True:
|
|
|
+ # signal that the process is ready to detect
|
|
|
+ detect_ready.set()
|
|
|
+ # wait until a frame is ready
|
|
|
+ frame_ready.wait()
|
|
|
+ # signal that the process is busy
|
|
|
+ detect_ready.clear()
|
|
|
+ frame_ready.clear()
|
|
|
+
|
|
|
+ detections[:] = object_detector.detect_raw(input_frame)
|
|
|
+
|
|
|
+ self.detect_process = mp.Process(target=run_detector, args=(model, labels, self.detect_ready, self.frame_ready))
|
|
|
+ self.detect_process.daemon = True
|
|
|
+ self.detect_process.start()
|
|
|
+
|
|
|
+ def detect(self, tensor_input, threshold=.4):
|
|
|
+ detections = []
|
|
|
+ with self.detect_lock:
|
|
|
+ self.input_frame[:] = tensor_input
|
|
|
+ # signal that a frame is ready
|
|
|
+ self.frame_ready.set()
|
|
|
+ # wait until the detection process is finished,
|
|
|
+ self.detect_ready.wait()
|
|
|
+ for d in self.detections:
|
|
|
+ if d[1] < threshold:
|
|
|
+ break
|
|
|
+ detections.append((
|
|
|
+ self.labels[int(d[0])],
|
|
|
+ float(d[1]),
|
|
|
+ (d[2], d[3], d[4], d[5])
|
|
|
+ ))
|
|
|
+ return detections
|
|
|
+
|
|
|
class ObjectTracker():
|
|
|
def __init__(self, max_disappeared):
|
|
|
self.tracked_objects = {}
|
|
@@ -421,6 +493,7 @@ def main():
|
|
|
frame = np.zeros(frame_shape, np.uint8)
|
|
|
motion_detector = MotionDetector(frame_shape, resize_factor=6)
|
|
|
object_detector = ObjectDetector('/lab/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite', '/lab/labelmap.txt')
|
|
|
+ # object_detector = RemoteObjectDetector('/lab/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite', '/lab/labelmap.txt')
|
|
|
# object_detector = ObjectDetector('/lab/detect.tflite', '/lab/labelmap.txt')
|
|
|
object_tracker = ObjectTracker(10)
|
|
|
|
|
@@ -432,8 +505,8 @@ def main():
|
|
|
ffmpeg_cmd = (['ffmpeg'] +
|
|
|
['-hide_banner','-loglevel','panic'] +
|
|
|
['-hwaccel','vaapi','-hwaccel_device','/dev/dri/renderD129','-hwaccel_output_format','yuv420p'] +
|
|
|
- ['-i', '/debug/input/output.mp4'] +
|
|
|
- # ['-i', '/debug/back-ali-jake.mp4'] +
|
|
|
+ # ['-i', '/debug/input/output.mp4'] +
|
|
|
+ ['-i', '/debug/back-ali-jake.mp4'] +
|
|
|
['-f','rawvideo','-pix_fmt','rgb24'] +
|
|
|
['pipe:'])
|
|
|
|
|
@@ -606,29 +679,29 @@ def main():
|
|
|
|
|
|
# if (frames >= 700 and frames <= 1635) or (frames >= 2500):
|
|
|
# if (frames >= 700 and frames <= 1000):
|
|
|
- # if (frames >= 0):
|
|
|
- # # row1 = cv2.hconcat([gray, cv2.convertScaleAbs(avg_frame)])
|
|
|
- # # row2 = cv2.hconcat([frameDelta, thresh])
|
|
|
- # # cv2.imwrite(f"/lab/debug/output/{frames}.jpg", cv2.vconcat([row1, row2]))
|
|
|
- # # # cv2.imwrite(f"/lab/debug/output/resized-frame-{frames}.jpg", resized_frame)
|
|
|
- # # for region in motion_regions:
|
|
|
- # # cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (255,128,0), 2)
|
|
|
- # # for region in object_regions:
|
|
|
- # # cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,128,255), 2)
|
|
|
- # for region in merged_regions:
|
|
|
- # cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
|
|
|
- # for box in motion_boxes:
|
|
|
- # cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (255,0,0), 2)
|
|
|
- # for detection in detections:
|
|
|
- # box = detection[2]
|
|
|
- # draw_box_with_label(frame, box[0], box[1], box[2], box[3], detection[0], f"{detection[1]*100}%")
|
|
|
- # for obj in object_tracker.tracked_objects.values():
|
|
|
- # box = obj['box']
|
|
|
- # draw_box_with_label(frame, box[0], box[1], box[2], box[3], obj['label'], obj['id'], thickness=1, color=(0,0,255), position='bl')
|
|
|
- # cv2.putText(frame, str(total_detections), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
|
|
|
- # cv2.putText(frame, str(frame_detections), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
|
|
|
- # cv2.imwrite(f"/lab/debug/output/frame-{frames}.jpg", frame)
|
|
|
- # break
|
|
|
+ if (frames >= 0):
|
|
|
+ # row1 = cv2.hconcat([gray, cv2.convertScaleAbs(avg_frame)])
|
|
|
+ # row2 = cv2.hconcat([frameDelta, thresh])
|
|
|
+ # cv2.imwrite(f"/lab/debug/output/{frames}.jpg", cv2.vconcat([row1, row2]))
|
|
|
+ # # cv2.imwrite(f"/lab/debug/output/resized-frame-{frames}.jpg", resized_frame)
|
|
|
+ # for region in motion_regions:
|
|
|
+ # cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (255,128,0), 2)
|
|
|
+ # for region in object_regions:
|
|
|
+ # cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,128,255), 2)
|
|
|
+ for region in merged_regions:
|
|
|
+ cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
|
|
|
+ for box in motion_boxes:
|
|
|
+ cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (255,0,0), 2)
|
|
|
+ for detection in detections:
|
|
|
+ box = detection[2]
|
|
|
+ draw_box_with_label(frame, box[0], box[1], box[2], box[3], detection[0], f"{detection[1]*100}%")
|
|
|
+ for obj in object_tracker.tracked_objects.values():
|
|
|
+ box = obj['box']
|
|
|
+ draw_box_with_label(frame, box[0], box[1], box[2], box[3], obj['label'], obj['id'], thickness=1, color=(0,0,255), position='bl')
|
|
|
+ cv2.putText(frame, str(total_detections), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
|
|
|
+ cv2.putText(frame, str(frame_detections), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
|
|
|
+ cv2.imwrite(f"/lab/debug/output/frame-{frames}.jpg", frame)
|
|
|
+ # break
|
|
|
|
|
|
duration = datetime.datetime.now().timestamp()-start
|
|
|
print(f"Processed {frames} frames for {duration:.2f} seconds and {(frames/duration):.2f} FPS.")
|