|
@@ -1,18 +1,79 @@
|
|
-import statistics
|
|
|
|
|
|
+import os
|
|
|
|
+from statistics import mean
|
|
|
|
+import multiprocessing as mp
|
|
import numpy as np
|
|
import numpy as np
|
|
-import time
|
|
|
|
-from frigate.edgetpu import ObjectDetector
|
|
|
|
|
|
+import datetime
|
|
|
|
+from frigate.edgetpu import ObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels
|
|
|
|
|
|
-object_detector = ObjectDetector()
|
|
|
|
|
|
+my_frame = np.expand_dims(np.full((300,300,3), 1, np.uint8), axis=0)
|
|
|
|
+labels = load_labels('/labelmap.txt')
|
|
|
|
|
|
-frame = np.zeros((300,300,3), np.uint8)
|
|
|
|
-input_frame = np.expand_dims(frame, axis=0)
|
|
|
|
|
|
+######
|
|
|
|
+# Minimal same process runner
|
|
|
|
+######
|
|
|
|
+# object_detector = ObjectDetector()
|
|
|
|
+# tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0)
|
|
|
|
|
|
-detection_times = []
|
|
|
|
|
|
+# start = datetime.datetime.now().timestamp()
|
|
|
|
|
|
-for x in range(0, 100):
|
|
|
|
- start = time.monotonic()
|
|
|
|
- object_detector.detect_raw(input_frame)
|
|
|
|
- detection_times.append(time.monotonic()-start)
|
|
|
|
|
|
+# frame_times = []
|
|
|
|
+# for x in range(0, 1000):
|
|
|
|
+# start_frame = datetime.datetime.now().timestamp()
|
|
|
|
|
|
-print(f"Average inference time: {statistics.mean(detection_times)*1000:.2f}ms")
|
|
|
|
|
|
+# tensor_input[:] = my_frame
|
|
|
|
+# detections = object_detector.detect_raw(tensor_input)
|
|
|
|
+# parsed_detections = []
|
|
|
|
+# for d in detections:
|
|
|
|
+# if d[1] < 0.4:
|
|
|
|
+# break
|
|
|
|
+# parsed_detections.append((
|
|
|
|
+# labels[int(d[0])],
|
|
|
|
+# float(d[1]),
|
|
|
|
+# (d[2], d[3], d[4], d[5])
|
|
|
|
+# ))
|
|
|
|
+# frame_times.append(datetime.datetime.now().timestamp()-start_frame)
|
|
|
|
+
|
|
|
|
+# duration = datetime.datetime.now().timestamp()-start
|
|
|
|
+# print(f"Processed for {duration:.2f} seconds.")
|
|
|
|
+# print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms")
|
|
|
|
+
|
|
|
|
+######
|
|
|
|
+# Separate process runner
|
|
|
|
+######
|
|
|
|
+def start(id, num_detections, detection_queue):
|
|
|
|
+ object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue)
|
|
|
|
+ start = datetime.datetime.now().timestamp()
|
|
|
|
+
|
|
|
|
+ frame_times = []
|
|
|
|
+ for x in range(0, num_detections):
|
|
|
|
+ start_frame = datetime.datetime.now().timestamp()
|
|
|
|
+ detections = object_detector.detect(my_frame)
|
|
|
|
+ frame_times.append(datetime.datetime.now().timestamp()-start_frame)
|
|
|
|
+
|
|
|
|
+ duration = datetime.datetime.now().timestamp()-start
|
|
|
|
+ print(f"{id} - Processed for {duration:.2f} seconds.")
|
|
|
|
+ print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
|
|
|
|
+
|
|
|
|
+edgetpu_process = EdgeTPUProcess()
|
|
|
|
+
|
|
|
|
+# start(1, 1000, edgetpu_process.detect_lock, edgetpu_process.detect_ready, edgetpu_process.frame_ready)
|
|
|
|
+
|
|
|
|
+####
|
|
|
|
+# Multiple camera processes
|
|
|
|
+####
|
|
|
|
+camera_processes = []
|
|
|
|
+for x in range(0, 10):
|
|
|
|
+ camera_process = mp.Process(target=start, args=(x, 100, edgetpu_process.detection_queue))
|
|
|
|
+ camera_process.daemon = True
|
|
|
|
+ camera_processes.append(camera_process)
|
|
|
|
+
|
|
|
|
+start = datetime.datetime.now().timestamp()
|
|
|
|
+
|
|
|
|
+for p in camera_processes:
|
|
|
|
+ p.start()
|
|
|
|
+
|
|
|
|
+for p in camera_processes:
|
|
|
|
+ p.join()
|
|
|
|
+
|
|
|
|
+duration = datetime.datetime.now().timestamp()-start
|
|
|
|
+print(f"Total - Processed for {duration:.2f} seconds.")
|